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1. Introduction
The computer vision community has made great advancements with the use of deep
learning for tasks such as object recognition,1,2 detection,3,4 and semantic segmenta-
tion.5,6 These state-of-the-art algorithms have far surpassed previous techniques for
these tasks, but the cost of learning is reflected in the large sets of labeled training
examples required to achieve this performance. For example, state-of-the-art object
classifiers are usually trained using the ImageNet dataset,7 which contains over one
million images.

The total human hours spent collecting labels for the ImageNet dataset was roughly
19 years,8 but this work of course was being done in parallel via crowdsourcing on
Amazon Mechanical Turk. The labeling task for this particular dataset is relatively
simple. The human is shown an image and provides a single object label that de-
scribes the image contents. Example images and labels from the ImageNet dataset
can be seen in Fig. 1. Note that a human is not asked to provide specific details about
the location of the object. The assumption of many image classification benchmark
datasets is that the object takes up most of the image and is roughly centered.

Fig. 1 Example images from the ImageNet dataset and labels that would be assigned by a
human annotator when hand labeling each of the images

As learning tasks become more complex (e.g., semantic segmentation), the work-
load to collect ground truth annotations for the training data significantly increases.
For semantic segmentation, the learning algorithm assigns a label to each pixel in
an image. Figure 2 shows an image with pixel-wise label annotations, where each
pixel is visually shown as a color that relates to its specific label assignment. This
means an algorithm is localizing and recognizing visual concepts, where visual
concepts can refer to objects, terrains, and any other distinct area in an environment
(e.g., sky). There are several labeling interfaces and techniques that have been used
to help with this annotation task. We review some of this technology in the next
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section, but in short, these existing frameworks provide an interface for manual
annotation (i.e., full human oversight), where a human hand outlines each distinct
visual concept region in the image to complete the labeling.

Fig. 2 Example image that has been assigned pixel-wise labels. Each pixel is overlaid with a 
color that maps to the semantic label associated with that pixel. For example, red indicates 
building and blue indicates sky.

Even with advances in domain adaptation, learners usually experience a perfor-
mance degrade when tested on data from a different domain than its training data.9 

This ultimately means to achieve top performance for a domain, data from that do-
main should be collected, labeled, and used to help train the learner. The relevance 
of this becomes critical for applications in environments that are quite different 
than existing benchmark datasets used by the computer vision community. This is 
particularly true for Army-relevant environments, where the scene may be highly 
unstructured, undergoing rapid change, consist of objects not currently recognized 
by existing technology, and many other differing factors. Further, making use of 
public crowdsourcing can be difficult when data cannot be publicly released, mean-
ing labeling is done in house.

This technical report addresses the need for an interface to collect pixel-wise label 
information for large visual datasets in a fully supervised manner, but provides ways 
to reduce the overall effort of a human during this process. Specifically, this techni-
cal report introduces SuperLabel: a labeling interface that does not require any hand 
outlining of regions in the image, but instead uses unsupervised segmentation algo-
rithms to automatically define superpixel regions. The unsupervised segmentation 
is dynamic, giving the user oversight and control of the defined boundaries to collect 
accurate labels. This is particularly important as the US Army Research Labora-

Approved for public release; distribution is unlimited.
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tory (ARL) makes an effort to generate datasets that are more military-relevant than
existing benchmark datasets currently used in the academic community.

2. Other Labeling Techniques
There are several other labeling techniques and interfaces available for a user to
collect pixel-wise label information. These techniques are briefly described. Note,
there are companies that provide label annotation services that have their own in-
house, non-publicly available annotation software. Outsourcing label annotation is
beyond the scope of this report, however, and will not be discussed.

2.1 Polygon Labeling
Polygon labeling is commonly used so the user can define a precise region of pixels
that should be assigned the same label. In other words, the user must draw a polygon
around each object or visual concept in the image and then assign a label to each
of the drawn regions. This type of labeling gives the user full control over defined
regions, but can require a lot of effort to mark these regions.

LabelMe10 was one of the first annotation tools that allowed a user to outline and
assign labels to polygons in an image. To select a polygon, the user makes line seg-
ments by clicking around the boundary of a visual concept in the image. For objects
in the image that have a relatively simple polygon shape (e.g., a rectangular box),
polygon construction requires only a few mouse clicks. However, many objects in
real-world scenes have shapes that are much more difficult to generate polygons for.
In many cases this is because the objects are non-rigid (e.g., people). Other times
the objects are simply composed of shapes that do not have many straight line edges
(e.g., vehicles and trees).

There are several other annotation interfaces that include polygon labeling. Matlab
includes the Image Labeler app,11 and Sloth12 is a labeling framework that can be
configured to individual researcher formats, but both include polygon labeling.
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2.2 Bounding Box Labeling
Bounding box labeling allows a user to define a rectangular region of interest and
assign a label to all pixels inside this bounding box. Assigning labels to bounding
boxes is less work than polygon labeling since a user only needs to define two
points to generate a box. However, this label assignment does not provide pixel-
wise labeling precision as most objects are not perfectly rectangular. This results
in background pixels being assigned the label as well. Often this type of labeling
is more relevant to object detection tasks, where detectors output bounding boxes
around objects of interest.

Matlab’s Image Labeler and Sloth also include bounding box labeling functionality.
Additionally, interfaces like the Simple Image Annotation tool13 and Labelbox14 are
specifically designed for this type of fast label assignment.

2.3 Synthetic Data
On the opposite spectrum of label annotation is the research effort that is put into
the generation and use of synthetic data for learning. For example, the Synthia15

dataset is a synthetic environment developed using the Unity development platform.
The generation of this dataset eliminates the need for human labeling effort since
labels are automatically assigned to pixels when an environment is created.

Although synthetic data generation is advancing quickly, and the visual output looks
remarkably real, there is still a domain gap that is being addressed in the synthetic
to real domain adaptation research area.16,17 Again, this issue can be heightened for
Army-relevant domains, where synthetic data is often designed to resemble that of
existing benchmark datasets from city environments that are highly structured.

3. Software and Labeling Setup
This section serves as a quick start guide to using the SuperLabel software. The
software dependencies, location of data input/output, how to specify labels, and
how to launch the software are all discussed. Throughout this section, the location
of the SuperLabel software package is referenced as ~/SuperLabel.
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3.1 Software Dependencies
SuperLabel is written in Python and has been tested on a platform running Ubuntu
16.04 and Python 2.7. The following is a list of Python library dependencies used
for graphical user interface (GUI) generation, image viewing, and label annotation
overlay:

• cv2

• numpy

• PyQt5

• skimage

3.2 Data Input and Output
Each dataset to label needs a directory to store the image input, the label output,
and a text file that defines the semantic labels a user can assign to the data. This
directory needs to be created in ~/SuperLabel. An example dataset is provided with
the software and is located at ~/SuperLabel/example_data. This is used as a running
example throughout this report.

3.2.1 Input Images
Images to be labeled need to be in a directory called images, which can be found
in the dataset directory. When the GUI is launched, image files from this directory
are sorted and displayed in order by their string file name. For data streams, frames
are easily viewed in order when image files are given sequential integer names.
For example, the images in ~/SuperLabel/example_data/images have the following
names:

00001.png

00002.png

.

.

.

00100.png
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3.2.2 Output Labels
Label files are generated or updated as a user interacts with the labeling inter-
face. The label files are saved in the dataset label_files directory (e.g., ~/Super-

Label/example_data/label_files). Each image has an associated label file with the
same file name and a numpy extension. For example, image 00001.png will have
the associated label file 00001.npy.

The label file is represented as 2-D numpy array with the same shape as the image.
Each pixel in the 2-D array has an integer value, where −1 indicates the pixel has
not been assigned a label, and labels 0, 1, . . . , N−1 indicate which of the N possible
labels the user has assigned to the pixel.

3.3 Loading Labels
A list of labels specific to the dataset needs to be stored in the dataset colormap.txt 
file. This file defines the label and associated visual color of that label in the GUI. 
Each line of the file represents a label and should be formatted as "index, label, R, 
G, B".

The index should be a sequential integer beginning at 0 and ending at N − 1 for 
N labels in the file. The label is the natural language label the user can select dur-
ing labeling, and R, G, B are the RGB color values associated with the label. The 
~/SuperLabel/example_data/colormap.txt file contains 10 labels:

0 building 255 0 0
1 road 255 128 0
2 cone 127 0 255
3 grass 0 102 0
4 tree 0 255 0
5 pole 0 255 255
6 water 0 128 255
7 sky 0 0 255
8 vehicle 255 255 0
9 object 255 0 127

Approved for public release; distribution is unlimited.
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3.4 Launching the GUI
The GUI must be launched from the ~/SuperLabel directory. The following is the
general form to launch the labeling interface:

python src/gui_main.py dataset [-skip n] [-start i]

The parameters to this interface launch are as follows:

• dataset: dataset directory that contains the images directory, label colormap
file, and where the label output will be stored.

• -skip: defines that every nth image will be displayed; default value is 1 so
every image will be shown as the user hits the Next button.

• -start: defines the ith image that will be shown first to the user; default value
is 1 so it starts at the first image in the sorted order.

Using the example data, the GUI can be launched as follows:

python src/gui_main.py example_data -skip 5 -start 1

This will begin by displaying the first image in the data stream, and display every
fifth image each time the user hits the Next button.

Once launched, the GUI can be resized to make the image display larger. Launching
the GUI automatically puts the user in a view only mode. The next section describes
the specific details of the labeling functionality and how a user can use this func-
tionality to assign labels to the pixels in the dataset images.

4. GUI Basic Functionality
The labeling GUI can be seen in Fig. 3. Different areas on the GUI provide the user
with various functionality. Most of this functionality is related to label assignment
and is discussed in Section 5. The rest of the basic functionality is outlined in the
figure and discussed in the rest of this section.

7
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Fig. 3 Basic layout of the label annotation interface

4.1 Image Display
Two images are always displayed in the GUI. The area outlined in red in Fig. 3
shows the current image being viewed, and to the right is a visualization of its
corresponding label annotation. In the label annotation image, all unlabeled pixels
(i.e., label of −1) are displayed as their grayscale value, and other pixels are shown
overlaid with their associated label color. The specific colors are determined by the
content of colormap.txt discussed in Section 3.3, and the label buttons to the right
of the image display also encode these colors.

4.2 Moving Between Images
The user can view different images in the dataset using the Prev and Next buttons
or by typing an image file name in the top right corner of the GUI (outlined in
blue in Fig. 3). The Prev and Next buttons move the user backward and forward,
respectively, n images, where n is defined as the skip count parameter passed in
when launching the GUI (see Section 3.4). The data stream is treated as a loop when
performing this action near the beginning and end of the set of ordered images.

Entering an image file name directly into the line edit allows the user to make larger
or irregular (i.e., not increments of n) moves throughout the dataset instead of via

8
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button clicks. The name of the image file currently being displayed can always be
found above these buttons and the line edit.

4.3 Image Zoom
A user can select a region of interest (ROI) within the image to crop and zoom. This
functionality can be completed with the buttons outlined in green as seen in Fig. 3.
The procedure to zoom in on an ROI is as follows:

1. Click the Select ROI button.

2. Click the top left corner of the ROI and drag to the bottom right corner before
releasing.

3. Inspect the bounding box generated.

4. Click the Zoom In button to accept the bounding box and zoom in.

5. Click the Reset button to reject the bounding box and re-select.

When zoomed in on an ROI, the user may click the Zoom Out button to return to
the original image view. Further, the user may only zoom in on an ROI from the
original view of the image, not a zoomed-in version of it.

4.4 Modes of Operation
There are two modes of operation that can be toggled in the Mode menu at the top of
the GUI, labeling and view only. This part of the GUI is outlined in orange in Fig. 3.
The default mode after launching the GUI is view only. The functionality described
thus far is available in both modes. Additional view-only mode functionality is
described in the rest of this section, and Section 5 describes the labeling mode
functionality.

The view-only mode is established to let the user visually inspect the current label
annotation for a particular set of images without the possibility of overwriting the
current labeled state. All label assignment functionality is disabled while in view-
only mode.

While in view-only mode, the user has the ability to click a pixel in the image
display area (either the raw image or the label overlay image) and see its current

9
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label assignment. The label is displayed in the GUI below the Prev and Next buttons.
Figure 4 shows the label output outlined in blue when the user clicks an area of the
grass (indicated by the mouse pointer outlined in red). Being able to see the specific
label name for a pixel can be beneficial as the number of labels being used on a
dataset increases and color annotations become more difficult to discern.

Fig. 4 Example label output displayed in GUI (outlined in blue) when a user clicks a pixel
(indicated by mouse outlined in red) in view-only mode

5. Labeling Mode Functionality
The labeling mode allows the user to interactively assign labels to pixels in images
from the dataset. One of the primary goals is to provide an interface that does not
require a user to generate a polygon outline of each class instance in the image.
Instead, the tool leverages unsupervised segmentation to automatically find the re-
gions and boundaries of classes, and the user then simply has to specify a label for
the automatically generated outline. Superpixel segmentation is used to facilitate
this approach.

5.1 Superpixel Segmentation
A superpixel is composed of multiple connected pixels that share similar color or
intensity levels in an image. Superpixel segmentation algorithms18–21 are commonly
used to reduce the number of primitives that must be processed. In the case of as-
signing labels to image pixels, the generation of superpixels allows a user to assign
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a label to each superpixel instead of each pixel. Further, by breaking the image into
a set of superpixels, region outlines or boundaries are automatically determined and
do not have to be precisely annotated by the user. When in labeling mode, instead
of displaying the raw image only, the superpixel segmentation output is shown in
the image display area as seen in Fig. 5. Each region enclosed by the red boundary
markers represents a superpixel.

Fig. 5 Example GUI when a user is in labeling mode. The superpixel segmentation can be seen
in the image display area. The green outlined area contains slider bars to dynamically change
the parameters to the segmentation algorithm, and the red outlined area denotes the location
of label buttons that can be used to assign a label to superpixels.

This annotation tool uses the Simple Linear Iterative Clustering (SLIC) segmenta-
tion algorithm19 to have a user assign labels to superpixels. SLIC represents a pixel
in an image with a 5-D feature space, p = [l, a, b, x, y]. The first three dimensions
are values extracted using the CIELAB colorspace, where l is for lightness, a is the
green-red color component, and b is the blue-yellow color component. The last two
dimensions, x and y, represent the location of p in the image. Image pixels are then
clustered using this feature representation.

11
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5.2 Parameters
Two parameters can be defined using the interface and passed to SLIC to produce
the superpixel segmentation:

• N — the number of the superpixels to output.

• compactness — a value to balance color and space proximity during super-
pixel construction.

These parameters can be entered by the user using the two sliding bars at the top of
the GUI, which are outlined in green in Fig. 5.

The value N is the approximate number of superpixels that SLIC with output. The
top row of Fig. 6 shows SLIC segmentation output on the same image when varying
the value of N . A larger value of N produces superpixels for a user to assign labels
to, but often produces superpixels that more accurately respect true region bound-
aries (i.e., each superpixel represents exactly one label). With smaller values (e.g.,
the segmentation when N = 50), there are some superpixels that consist of pixels
from multiple objects/terrain/concepts in the scene. This can be seen in the N = 50

top right corner superpixel. Most pixels are sky but some represent the pole.

The bottom row of Fig. 6 shows SLIC segmentation output when varying the com-
pactness parameter. Larger compactness values weight space proximity higher, yield-
ing superpixels shapes that look more square as seen in the compactness = 100

output on the far right. A smaller compactness value weights color more heavily
and can result in superpixels with more irregular shapes.

5.3 Dynamic Segmentation
The sliding parameter bars for N and compactness allow SLIC segmentation to be
run dynamically when labeling an image. The range of values available on the slider
bar are as follows:

• N = [1,1000]

• compactness = [1,100]

12
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Fig. 6 SLIC superpixel output when the parameters N (number of segments) and compactness
are varied

As the user changes these values, the output of the segmentation changes in real-
time. This dynamic segmentation provides greater flexibility to produce more accu-
rate labeling. The example segmentation in Fig. 6 shows that visual concepts in the
image may be segmented better or worse depending on the parameter setting. Thus,
the user can label as much of the image accurately as possible under one parameter
setting, and update the parameters to get better segmentation for remaining areas of
the image.

Ultimately, the functionality to dynamically segment an image provides the user
with the opportunity to label large areas of the image with a single label assignment
for visual concepts that are easier to accurately segment. Notice the large accurate
superpixels in the N = 50 segmentation (top row of Fig. 6) for much of the sky and
road. Adjusting the parameters, the user could then generate a segmentation with
smaller superpixels to label more complex regions of the image.

13
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5.4 Label Assignment
Each possible label (see Section 3.3 on how to define these) is represented by a
button in the right side of GUI, which is denoted in Fig. 5 by the red outline. Notice
on each button following the natural language semantic label is a unique integer ID
for the label. This integer ID indicates the corresponding key press that can be used
to also represent the label. Thus, there are two ways to select the label to assign
to part of the image:

• Click the label button.

• Press the integer key associated with the label button.

Note that only the first 10 labels have associated integer key presses (i.e., 0–9).

To assign a label the user must first “mark" which superpixel(s) to label, and then
select the corresponding label button or key press. There are two ways to perform
superpixel marking in this interface. The first allows a user to mark a single
superpixel, while the second allows the user to mark multiple superpixels:

• Click and release: the user clicks the mouse anywhere inside the desired su-
perpixel boundary and then releases.

• Click and drag: the user clicks inside a superpixel boundary and then drags the
mouse through any other superpixel boundaries that should also be marked
with the same label.

During the marking stage a user can use the two marking techniques in any com-
bination. Superpixels are added to a labeling queue as long as marking techniques
are performed, and when a label button is selected every superpixel currently in the
queue will be assigned the selected label.

When a label button is clicked, the image label display immediately updates so the
user can see the current set of labels assigned to the image.

5.5 Toggling Between Modes
Any time the user toggles between view-only and labeling modes, the current state
of the GUI is reset to the following properties:

14
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• The zoom is defined as the full image size.

• All superpixels marked and stored in the labeling queue are removed.

• Both slider bars are set to a default value of 1.

6. Conclusion
It is fast and easy to collect large amounts of raw visual data. However, the process
of manually annotating this data to provide ground truth information that machine
learning algorithms can learn from can be very tedious and time consuming. Al-
though there is effort in learning from unlabeled or weakly labeled data, the perfor-
mance of supervised learners given large amounts of labeled training data still far
exceeds these other lines of research. Tools that ease the burden of image labeling
are important to ensure fast and accurate annotation results.

The use of the SuperLabel software enables researchers to collect accurate pixel-
wise label annotations that can be used for machine learning tasks such as semantic
segmentation, object detection, and scene understanding. By leveraging unsuper-
vised superpixel segmentation, the manual annotation effort of identifying and out-
lining distinct regions in an image can be eliminated. Instead, through dynamic
parameter selection, the user can generate different but accurate region boundaries
for each visual concept in the data. The SuperLabel GUI enables fast superpixel
marking techniques and a real-time visual update of the label assignments made by
the user.
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List of Symbols, Abbreviations, and Acronyms

2-D   2-dimensional

ARL US Army Research Laboratory

GUI  graphical user interface

ROI   region of interest

SLIC Super Linear Iterative Clustering
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